大规模并发值之电商秒杀与抢购

一、大规模并发带来的挑战

  1. 请求接口的合理设计

一个秒杀或者抢购页面,通常分为2个部分,一个是静态的HTML等内容,另一个就是参与秒杀的Web后台请求接口。

通常静态HTML等内容,是通过CDN的部署,一般压力不大,核心瓶颈实际上在后台请求接口上。这个后端接口,必须能够支持高并发请求,同时,非常 重要的一点,必须尽可能“快”,在最短的时间里返回用户的请求结果。为了实现尽可能快这一点,接口的后端存储使用内存级别的操作会更好一点。仍然直接面向 MySQL之类的存储是不合适的,如果有这种复杂业务的需求,都建议采用异步写入。

当然,也有一些秒杀和抢购采用“滞后反馈”,就是说秒杀当下不知道结果,一段时间后才可以从页面中看到用户是否秒杀成功。但是,这种属于“偷懒”行为,同时给用户的体验也不好,容易被用户认为是“暗箱操作”。

  1. 高并发的挑战:一定要“快”

我们通常衡量一个Web系统的吞吐率的指标是QPS(Query Per Second,每秒处理请求数),解决每秒数万次的高并发场景,这个指标非常关键。举个例子,我们假设处理一个业务请求平均响应时间为100ms,同时, 系统内有20台Apache的Web服务器,配置MaxClients为500个(表示Apache的最大连接数目)。

那么,我们的Web系统的理论峰值QPS为(理想化的计算方式):

20*500/0.1 = 100000 (10万QPS)

咦?我们的系统似乎很强大,1秒钟可以处理完10万的请求,5w/s的秒杀似乎是“纸老虎”哈。实际情况,当然没有这么理想。在高并发的实际场景下,机器都处于高负载的状态,在这个时候平均响应时间会被大大增加。

就Web服务器而言,Apache打开了越多的连接进程,CPU需要处理的上下文切换也越多,额外增加了CPU的消耗,然后就直接导致平均响应时间 增加。因此上述的MaxClient数目,要根据CPU、内存等硬件因素综合考虑,绝对不是越多越好。可以通过Apache自带的abench来测试一 下,取一个合适的值。然后,我们选择内存操作级别的存储的Redis,在高并发的状态下,存储的响应时间至关重要。网络带宽虽然也是一个因素,不过,这种 请求数据包一般比较小,一般很少成为请求的瓶颈。负载均衡成为系统瓶颈的情况比较少,在这里不做讨论哈。

那么问题来了,假设我们的系统,在5w/s的高并发状态下,平均响应时间从100ms变为250ms(实际情况,甚至更多):

20*500/0.25 = 40000 (4万QPS)

于是,我们的系统剩下了4w的QPS,面对5w每秒的请求,中间相差了1w。

然后,这才是真正的恶梦开始。举个例子,高速路口,1秒钟来5部车,每秒通过5部车,高速路口运作正常。突然,这个路口1秒钟只能通过4部车,车流量仍然依旧,结果必定出现大塞车。(5条车道忽然变成4条车道的感觉)

同理,某一个秒内,20*500个可用连接进程都在满负荷工作中,却仍然有1万个新来请求,没有连接进程可用,系统陷入到异常状态也是预期之内。

其实在正常的非高并发的业务场景中,也有类似的情况出现,某个业务请求接口出现问题,响应时间极慢,将整个Web请求响应时间拉得很长,逐渐将Web服务器的可用连接数占满,其他正常的业务请求,无连接进程可用。

更可怕的问题是,是用户的行为特点,系统越是不可用,用户的点击越频繁,恶性循环最终导致“雪崩”(其中一台Web机器挂了,导致流量分散到其他正常工作的机器上,再导致正常的机器也挂,然后恶性循环),将整个Web系统拖垮。

  1. 重启与过载保护

如果系统发生“雪崩”,贸然重启服务,是无法解决问题的。最常见的现象是,启动起来后,立刻挂掉。这个时候,最好在入口层将流量拒绝,然后再将重启。如果是redis/memcache这种服务也挂了,重启的时候需要注意“预热”,并且很可能需要比较长的时间。

秒杀和抢购的场景,流量往往是超乎我们系统的准备和想象的。这个时候,过载保护是必要的。如果检测到系统满负载状态,拒绝请求也是一种保护措施。在 前端设置过滤是最简单的方式,但是,这种做法是被用户“千夫所指”的行为。更合适一点的是,将过载保护设置在CGI入口层,快速将客户的直接请求返回。


上一篇:
下一篇:
关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园综合楼6层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦6层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)