尚硅谷大数据技术之Hadoop(MapReduce)(新)第6章 Hadoop企业优化

第6章 Hadoop企业优化

6.1 MapReduce 跑的慢的原因

6.2 MapReduce优化方法

MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

6.2.1 数据输入

6.2.2 Map阶段

6.2.3 Reduce阶段

6.2.4 I/O传输

6.2.5 数据倾斜问题

6.2.6 常用的调优参数

1.资源相关参数

(1)以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xml)

表4-12

配置参数

参数说明

mapreduce.map.memory.mb

一个MapTask可使用的资源上限(单位:MB),默认为1024。如果MapTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb

一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.cpu.vcores

每个MapTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.cpu.vcores

每个ReduceTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.shuffle.parallelcopies

每个Reduce去Map中取数据的并行数。默认值是5

mapreduce.reduce.shuffle.merge.percent

Buffer中的数据达到多少比例开始写入磁盘。默认值0.66

mapreduce.reduce.shuffle.input.buffer.percent

Buffer大小占Reduce可用内存的比例。默认值0.7

mapreduce.reduce.input.buffer.percent

指定多少比例的内存用来存放Buffer中的数据,默认值是0.0

(2)应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

表4-13

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb   

给应用程序Container分配的最小内存,默认值:1024

yarn.scheduler.maximum-allocation-mb   

给应用程序Container分配的最大内存,默认值:8192

yarn.scheduler.minimum-allocation-vcores

每个Container申请的最小CPU核数,默认值:1

yarn.scheduler.maximum-allocation-vcores

每个Container申请的最大CPU核数,默认值:32

yarn.nodemanager.resource.memory-mb   

给Containers分配的最大物理内存,默认值:8192

(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)

表4-14

配置参数

参数说明

mapreduce.task.io.sort.mb   

Shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent   

环形缓冲区溢出的阈值,默认80%

2.容错相关参数(MapReduce性能优化)

表4-15

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个Task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该Task处于Block状态,可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

 


上一篇:
下一篇:
关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
电话:010-56253825
邮箱:info@atguigu.com
地址:北京市昌平区宏福科技园综合楼6层(北京校区)

 深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦6层(上海校区)