大数据培训面试题分析-全量构建和增量构建的区别

发布时间:2020年03月10日作者:atguigu浏览次数:1,371

大数据培训

1.全量构建

对数据模型中没有指定分割时间列信息的Cube,Kylin会采用全量构建,即每次从Hive中读取全部的数据来开始构建。通常它适用于以下两种情形。

事实表的数据不是按时间增长的。

大数据培训

事实表的数据比较小或更新频率很低,全量构建不会造成太大的开销。

2.增量构建

增量构建的时候,Kylin每次都会从Hive中读取一个时间范围内的数据,然后进行计算,并以一个Segment的形式进行保存。下次再构建的时候,会自动以上次结束的时间为起点时间,再选择新的终止时间进行构建。

大数据培训

全量构建和增量构建的区别

1.全量构建每次更新时都需要更新整个数据集,增量构建只对需要更新的时间范围进行更新,所以计算量会较小。

2.全量构建查询时不需要合并不同Segment,增量构建查询时需要合并不同Segment的结果,查询性能会受影响。

3.全量构建不需要对后续的Segment合并,增量构建累计一定量的Segment后需要进行合并。

4.全量构建适合小数据量或全表更新的Cube,增量构建适合大数据量的Cube。

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习


上一篇:
下一篇:
相关课程

java培训 大数据培训 前端培训

关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园2号楼3层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦3层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)

西安市雁塔区和发智能大厦B座3层(西安校区)

成都市成华区北辰星拱青创园综合楼3层(成都校区)