大数据培训之单数据源多出口案例(选择器)

发布时间:2020年06月12日作者:atguigu浏览次数:737

单数据源多出口案例(选择器)

单Source多Channel、Sink如图3-1所示。

大数据培训

图3-1 单Source多Channel、Sink

1)案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。

2)需求分析:

大数据培训

3)实现步骤:

0.准备工作

       在/opt/module/flume/job目录下创建group1文件夹

[atguigu@hadoop102 job]$ cd group1/

在/opt/module/datas/目录下创建flume3文件夹

[atguigu@hadoop102 datas]$ mkdir flume3

1.创建flume-file-flume.conf

配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。

创建配置文件并打开

[atguigu@hadoop102 group1]$ touch flume-file-flume.conf

[atguigu@hadoop102 group1]$ vim flume-file-flume.conf

添加如下内容

# Name the components on this agent

a1.sources = r1

a1.sinks = k1 k2

a1.channels = c1 c2

# 将数据流复制给所有channel

a1.sources.r1.selector.type = replicating

# Describe/configure the source

a1.sources.r1.type = exec

a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log

a1.sources.r1.shell = /bin/bash -c

# Describe the sink

a1.sinks.k1.type = avro

a1.sinks.k1.hostname = hadoop102

a1.sinks.k1.port = 4141

a1.sinks.k2.type = avro

a1.sinks.k2.hostname = hadoop102

a1.sinks.k2.port = 4142

# Describe the channel

a1.channels.c1.type = memory

a1.channels.c1.capacity = 1000

a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory

a1.channels.c2.capacity = 1000

a1.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel

a1.sources.r1.channels = c1 c2

a1.sinks.k1.channel = c1

a1.sinks.k2.channel = c2

注:Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。

注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

2.创建flume-flume-hdfs.conf

配置上级Flume输出的Source,输出是到HDFS的Sink。

创建配置文件并打开

[atguigu@hadoop102 group1]$ touch flume-flume-hdfs.conf

[atguigu@hadoop102 group1]$ vim flume-flume-hdfs.conf

添加如下内容

# Name the components on this agent

a2.sources = r1

a2.sinks = k1

a2.channels = c1

# Describe/configure the source

a2.sources.r1.type = avro

a2.sources.r1.bind = hadoop102

a2.sources.r1.port = 4141

# Describe the sink

a2.sinks.k1.type = hdfs

a2.sinks.k1.hdfs.path = hdfs://hadoop102:9000/flume2/%Y%m%d/%H

#上传文件的前缀

a2.sinks.k1.hdfs.filePrefix = flume2-

#是否按照时间滚动文件夹

a2.sinks.k1.hdfs.round = true

#多少时间单位创建一个新的文件夹

a2.sinks.k1.hdfs.roundValue = 1

#重新定义时间单位

a2.sinks.k1.hdfs.roundUnit = hour

#是否使用本地时间戳

a2.sinks.k1.hdfs.useLocalTimeStamp = true

#积攒多少个Event才flush到HDFS一次

a2.sinks.k1.hdfs.batchSize = 100

#设置文件类型,可支持压缩

a2.sinks.k1.hdfs.fileType = DataStream

#多久生成一个新的文件

a2.sinks.k1.hdfs.rollInterval = 600

#设置每个文件的滚动大小大概是128M

a2.sinks.k1.hdfs.rollSize = 134217700

#文件的滚动与Event数量无关

a2.sinks.k1.hdfs.rollCount = 0

# Describe the channel

a2.channels.c1.type = memory

a2.channels.c1.capacity = 1000

a2.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel

a2.sources.r1.channels = c1

a2.sinks.k1.channel = c1

3.创建flume-flume-dir.conf

配置上级Flume输出的Source,输出是到本地目录的Sink。

创建配置文件并打开

[atguigu@hadoop102 group1]$ touch flume-flume-dir.conf

[atguigu@hadoop102 group1]$ vim flume-flume-dir.conf

添加如下内容

# Name the components on this agent

a3.sources = r1

a3.sinks = k1

a3.channels = c2

# Describe/configure the source

a3.sources.r1.type = avro

a3.sources.r1.bind = hadoop102

a3.sources.r1.port = 4142

# Describe the sink

a3.sinks.k1.type = file_roll

a3.sinks.k1.sink.directory = /opt/module/data/flume3

# Describe the channel

a3.channels.c2.type = memory

a3.channels.c2.capacity = 1000

a3.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel

a3.sources.r1.channels = c2

a3.sinks.k1.channel = c2

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

4.执行配置文件

分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

[atguigu@hadoop102 flume]$ bin/flume-ng agent –conf conf/ –name a3 –conf-file job/group1/flume-flume-dir.conf

[atguigu@hadoop102 flume]$ bin/flume-ng agent –conf conf/ –name a2 –conf-file job/group1/flume-flume-hdfs.conf

[atguigu@hadoop102 flume]$ bin/flume-ng agent –conf conf/ –name a1 –conf-file job/group1/flume-file-flume.conf

5.启动Hadoop和Hive

[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh

[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh

[atguigu@hadoop102 hive]$ bin/hive

hive (default)>

6.检查HDFS上数据

大数据培训

7检查/opt/module/datas/flume3目录中数据

[atguigu@hadoop102 flume3]$ ll

总用量 8

-rw-rw-r–. 1 atguigu atguigu 5942 5月  22 00:09 1526918887550-3


上一篇:
下一篇:
相关课程

java培训 大数据培训 前端培训

关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园2号楼3层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦3层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)

西安市雁塔区和发智能大厦B座3层(西安校区)

成都市成华区北辰星拱青创园综合楼3层(成都校区)