MapReduce扩展案例
倒排索引案例(多job串联)
1.需求
有大量的文本(文档、网页),需要建立搜索索引,如图4-31所示。
(1)数据输入

(2)期望输出数据
atguigu c.txt–>2 b.txt–>2 a.txt–>3
pingping c.txt–>1 b.txt–>3 a.txt–>1
ss c.txt–>1 b.txt–>1 a.txt–>2
2.需求分析

3.第一次处理
(1)第一次处理,编写OneIndexMapper类
package com.atguigu.mapreduce.index; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class OneIndexMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ String name; Text k = new Text(); IntWritable v = new IntWritable(); @Override protected void setup(Context context)throws IOException, InterruptedException { // 获取文件名称 FileSplit split = (FileSplit) context.getInputSplit(); name = split.getPath().getName(); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取1行 String line = value.toString(); // 2 切割 String[] fields = line.split(” “); for (String word : fields) { // 3 拼接 k.set(word+”–“+name); v.set(1); // 4 写出 context.write(k, v); } } } |
(2)第一次处理,编写OneIndexReducer类
package com.atguigu.mapreduce.index; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class OneIndexReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ IntWritable v = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; // 1 累加求和 for(IntWritable value: values){ sum +=value.get(); } v.set(sum); // 2 写出 context.write(key, v); } } |
(3)第一次处理,编写OneIndexDriver类
package com.atguigu.mapreduce.index; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class OneIndexDriver { public static void main(String[] args) throws Exception { // 输入输出路径需要根据自己电脑上实际的输入输出路径设置 args = new String[] { “e:/input/inputoneindex”, “e:/output5” }; Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(OneIndexDriver.class); job.setMapperClass(OneIndexMapper.class); job.setReducerClass(OneIndexReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } } |
(4)查看第一次输出结果
atguigu–a.txt 3 atguigu–b.txt 2 atguigu–c.txt 2 pingping–a.txt 1 pingping–b.txt 3 pingping–c.txt 1 ss–a.txt 2 ss–b.txt 1 ss–c.txt 1 |
4.第二次处理
(1)第二次处理,编写TwoIndexMapper类
package com.atguigu.mapreduce.index; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class TwoIndexMapper extends Mapper<LongWritable, Text, Text, Text>{ Text k = new Text(); Text v = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取1行数据 String line = value.toString(); // 2用“–”切割 String[] fields = line.split(“–“); k.set(fields[0]); v.set(fields[1]); // 3 输出数据 context.write(k, v); } } |
(2)第二次处理,编写TwoIndexReducer类
package com.atguigu.mapreduce.index; import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class TwoIndexReducer extends Reducer<Text, Text, Text, Text> { Text v = new Text(); @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { // atguigu a.txt 3 // atguigu b.txt 2 // atguigu c.txt 2 // atguigu c.txt–>2 b.txt–>2 a.txt–>3 StringBuilder sb = new StringBuilder(); // 1 拼接 for (Text value : values) { sb.append(value.toString().replace(“\t”, “–>”) + “\t”); } v.set(sb.toString()); // 2 写出 context.write(key, v); } } |
(3)第二次处理,编写TwoIndexDriver类
package com.atguigu.mapreduce.index; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TwoIndexDriver { public static void main(String[] args) throws Exception { // 输入输出路径需要根据自己电脑上实际的输入输出路径设置 args = new String[] { “e:/input/inputtwoindex”, “e:/output6” }; Configuration config = new Configuration(); Job job = Job.getInstance(config); job.setJarByClass(TwoIndexDriver.class); job.setMapperClass(TwoIndexMapper.class); job.setReducerClass(TwoIndexReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean result = job.waitForCompletion(true); System.exit(result?0:1); } } |
(4)第二次查看最终结果
atguigu c.txt–>2 b.txt–>2 a.txt–>3
pingping c.txt–>1 b.txt–>3 a.txt–>1
ss c.txt–>1 b.txt–>1 a.txt–>2
想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习
上一篇: 大数据培训课程HDFS小文件优化方法
下一篇: 大数据培训MapReduce扩展案例TopN案例