常规性能调优调节本地化等待时长_大数据培训

发布时间:2020年12月10日作者:atguigu浏览次数:692

常规性能调优调节本地化等待时长

Spark作业运行过程中,Driver会对每一个stage的task进行分配。根据Spark的task分配算法,Spark希望task能够运行在它要计算的数据算在的节点(数据本地化思想),这样就可以避免数据的网络传输。通常来说,task可能不会被分配到它处理的数据所在的节点,因为这些节点可用的资源可能已经用尽,此时,Spark会等待一段时间,默认3s,如果等待指定时间后仍然无法在指定节点运行,那么会自动降级,尝试将task分配到比较差的本地化级别所对应的节点上,比如将task分配到离它要计算的数据比较近的一个节点,然后进行计算,如果当前级别仍然不行,那么继续降级。

当task要处理的数据不在task所在节点上时,会发生数据的传输。task会通过所在节点的BlockManager获取数据,BlockManager发现数据不在本地时,户通过网络传输组件从数据所在节点的BlockManager处获取数据。

网络传输数据的情况是我们不愿意看到的,大量的网络传输会严重影响性能,因此,我们希望通过调节本地化等待时长,如果在等待时长这段时间内,目标节点处理完成了一部分task,那么当前的task将有机会得到执行,这样就能够改善Spark作业的整体性能。

Spark的本地化等级如表2-3所示:

大数据培训

表2-3 Spark本地化等级

名称

解析

PROCESS_LOCAL

进程本地化,task和数据在同一个Executor中,性能最好。

NODE_LOCAL

节点本地化,task和数据在同一个节点中,但是task和数据不在同一个Executor中,数据需要在进程间进行传输。

RACK_LOCAL

机架本地化,task和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输。

NO_PREF

对于task来说,从哪里获取都一样,没有好坏之分。

ANY

task和数据可以在集群的任何地方,而且不在一个机架中,性能最差。

在Spark项目开发阶段,可以使用client模式对程序进行测试,此时,可以在本地看到比较全的日志信息,日志信息中有明确的task数据本地化的级别,如果大部分都是PROCESS_LOCAL,那么就无需进行调节,但是如果发现很多的级别都是NODE_LOCAL、ANY,那么需要对本地化的等待时长进行调节,通过延长本地化等待时长,看看task的本地化级别有没有提升,并观察Spark作业的运行时间有没有缩短。

注意,过犹不及,不要将本地化等待时长延长地过长,导致因为大量的等待时长,使得Spark作业的运行时间反而增加了。

Spark本地化等待时长的设置如代码清单2-5所示:

大数据培训

代码清单2-5 Spark本地化等待时长设置示例

val conf = new SparkConf()

  .set(“spark.locality.wait”, “6”)

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习


上一篇:
下一篇:
相关课程

java培训 大数据培训 前端培训

关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园2号楼3层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦3层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)

西安市雁塔区和发智能大厦B座3层(西安校区)

成都市成华区北辰星拱青创园综合楼3层(成都校区)