键值对RDD数据自定义分区_大数据培训

发布时间:2021年05月06日作者:atguigu浏览次数:526

自定义分区

要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。

(1)numPartitions: Int:返回创建出来的分区数。

(2)getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。

(3)equals():Java 判断相等性的标准方法。这个方法的实现非常重要,Spark 需要用这个方法来检查你的分区器对象是否和其他分区器实例相同,这样 Spark 才可以判断两个 RDD 的分区方式是否相同。

需求:将相同后缀的数据写入相同的文件,通过将相同后缀的数据分区到相同的分区并保存输出来实现。

(1)创建一个pairRDD

scala> val data = sc.parallelize(Array((1,1),(2,2),(3,3),(4,4),(5,5),(6,6)))

data: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24

(2)定义一个自定义分区类

键值对RDD数据自定义分区_大数据培训

(3)将RDD使用自定义的分区类进行重新分区

scala> val par = data.partitionBy(new CustomerPartitioner(2))

par: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[2] at partitionBy at <console>:27

(4)查看重新分区后的数据分布

scala> par.mapPartitionsWithIndex((index,items)=>items.map((index,_))).collect

res3: Array[(Int, (Int, Int))] = Array((0,(2,2)), (0,(4,4)), (0,(6,6)), (1,(1,1)), (1,(3,3)), (1,(5,5)))

使用自定义的 Partitioner 是很容易的:只要把它传给 partitionBy() 方法即可。Spark 中有许多依赖于数据混洗的方法,比如 join() 和 groupByKey(),它们也可以接收一个可选的 Partitioner 对象来控制输出数据的分区方式。

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。


上一篇:
下一篇:
相关课程

java培训 大数据培训 前端培训

关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园2号楼3层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦3层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)

西安市雁塔区和发智能大厦B座3层(西安校区)

成都市成华区北辰星拱青创园综合楼3层(成都校区)