自定义分区
要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。
(1)numPartitions: Int:返回创建出来的分区数。
(2)getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。
(3)equals():Java 判断相等性的标准方法。这个方法的实现非常重要,Spark 需要用这个方法来检查你的分区器对象是否和其他分区器实例相同,这样 Spark 才可以判断两个 RDD 的分区方式是否相同。
需求:将相同后缀的数据写入相同的文件,通过将相同后缀的数据分区到相同的分区并保存输出来实现。
(1)创建一个pairRDD
scala> val data = sc.parallelize(Array((1,1),(2,2),(3,3),(4,4),(5,5),(6,6)))
data: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24
(2)定义一个自定义分区类
(3)将RDD使用自定义的分区类进行重新分区
scala> val par = data.partitionBy(new CustomerPartitioner(2))
par: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[2] at partitionBy at <console>:27
(4)查看重新分区后的数据分布
scala> par.mapPartitionsWithIndex((index,items)=>items.map((index,_))).collect
res3: Array[(Int, (Int, Int))] = Array((0,(2,2)), (0,(4,4)), (0,(6,6)), (1,(1,1)), (1,(3,3)), (1,(5,5)))
使用自定义的 Partitioner 是很容易的:只要把它传给 partitionBy() 方法即可。Spark 中有许多依赖于数据混洗的方法,比如 join() 和 groupByKey(),它们也可以接收一个可选的 Partitioner 对象来控制输出数据的分区方式。
想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。
上一篇: 基于注解的Spring AOP_java培训
下一篇: ES6模块化_前端培训