HBase
由于 org.apache.hadoop.hbase.mapreduce.TableInputFormat 类的实现,Spark 可以通过Hadoop输入格式访问HBase。这个输入格式会返回键值对数据,其中键的类型为org. apache.hadoop.hbase.io.ImmutableBytesWritable,而值的类型为org.apache.hadoop.hbase.client.
Result。
(1)添加依赖
(2)从HBase读取数据
package com.atguigu
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.hadoop.hbase.util.Bytes
object HBaseSpark {
def main(args: Array[String]): Unit = {
//创建spark配置信息
val sparkConf: SparkConf = new SparkConf().setMaster(“local[*]”).setAppName(“JdbcRDD”)
//创建SparkContext
val sc = new SparkContext(sparkConf)
//构建HBase配置信息
val conf: Configuration = HBaseConfiguration.create()
conf.set(“hbase.zookeeper.quorum”, “hadoop102,hadoop103,hadoop104”)
conf.set(TableInputFormat.INPUT_TABLE, “rddtable”)
//从HBase读取数据形成RDD
val hbaseRDD: RDD[(ImmutableBytesWritable, Result)] = sc.newAPIHadoopRDD(
conf,
classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result])
val count: Long = hbaseRDD.count()
println(count)
//对hbaseRDD进行处理
hbaseRDD.foreach {
case (_, result) =>
val key: String = Bytes.toString(result.getRow)
val name: String = Bytes.toString(result.getValue(Bytes.toBytes(“info”), Bytes.toBytes(“name”)))
val color: String = Bytes.toString(result.getValue(Bytes.toBytes(“info”), Bytes.toBytes(“color”)))
println(“RowKey:” + key + “,Name:” + name + “,Color:” + color)
}
//关闭连接
sc.stop()
}
}
3)往HBase写入
想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。
上一篇: JdbcTemplate_java培训
下一篇: 自定义 Hook(State Hook)_前端培训