项目体系架构设计
项目系统架构
项目以推荐系统建设领域知名的经过修改过的MovieLens数据集作为依托,以某科技公司电影网站真实业务数据架构为基础,构建了符合教学体系的一体化的电影推荐系统,包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。提供了从前端应用、后台服务、算法设计实现、平台部署等多方位的闭环的业务实现。
用户可视化:主要负责实现和用户的交互以及业务数据的展示,主体采用AngularJS2进行实现,部署在Apache服务上。
综合业务服务:主要实现JavaEE层面整体的业务逻辑,通过Spring进行构建,对接业务需求。部署在Tomcat上。
【数据存储部分】
业务数据库:项目采用广泛应用的文档数据库MongDB作为主数据库,主要负责平台业务逻辑数据的存储。
搜索服务器:项目爱用ElasticSearch作为模糊检索服务器,通过利用ES强大的匹配查询能力实现基于内容的推荐服务。
缓存数据库:项目采用Redis作为缓存数据库,主要用来支撑实时推荐系统部分对于数据的高速获取需求。
【离线推荐部分】
离线统计服务:批处理统计性业务采用Spark Core + Spark SQL进行实现,实现对指标类数据的统计任务。
离线推荐服务:离线推荐业务采用Spark Core + Spark MLlib进行实现,采用ALS算法进行实现。
工作调度服务:对于离线推荐部分需要以一定的时间频率对算法进行调度,采用Azkaban进行任务的调度。
【实时推荐部分】
日志采集服务:通过利用Flume-ng对业务平台中用户对于电影的一次评分行为进行采集,实时发送到Kafka集群。
消息缓冲服务:项目采用Kafka作为流式数据的缓存组件,接受来自Flume的数据采集请求。并将数据推送到项目的实时推荐系统部分。
实时推荐服务:项目采用Spark Streaming作为实时推荐系统,通过接收Kafka中缓存的数据,通过设计的推荐算法实现对实时推荐的数据处理,并将结构合并更新到MongoDB数据库。
想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。
上一篇: Squirrel可视化连接Phoenix_大数据培训
下一篇: 大数据项目之电影推荐系统-数据流程