大数据项目之电影推荐系统-数据流程

发布时间:2021年12月09日作者:atguigu浏览次数:712

项目数据流程

大数据培训项目

【系统初始化部分】

  1. 通过Spark SQL将系统初始化数据加载到MongoDB和ElasticSearch中。

【离线推荐部分】

  1. 通过Azkaban实现对于离线统计服务以离线推荐服务的调度,通过设定的运行时间完成对任务的触发执行。
  2. 离线统计服务从MongoDB中加载数据,将【电影平均评分统计】、【电影评分个数统计】、【最近电影评分个数统计】三个统计算法进行运行实现,并将计算结果回写到MongoDB中;离线推荐服务从MongoDB中加载数据,通过ALS算法分别将【用户推荐结果矩阵】、【影片相似度矩阵】回写到MongoDB中。

【实时推荐部分】

  1. Flume从综合业务服务的运行日志中读取日志更新,并将更新的日志实时推送到Kafka中;Kafka在收到这些日志之后,通过kafkaStream程序对获取的日志信息进行过滤处理,获取用户评分数据流【UID|MID|SCORE|TIMESTAMP】,并发送到另外一个Kafka队列;Spark Streaming监听Kafka队列,实时获取Kafka过滤出来的用户评分数据流,融合存储在Redis中的用户最近评分队列数据,提交给实时推荐算法,完成对用户新的推荐结果计算;计算完成之后,将新的推荐结构和MongDB数据库中的推荐结果进行合并。

【业务系统部分】

  1. 推荐结果展示部分,从MongoDB、ElasticSearch中将离线推荐结果、实时推荐结果、内容推荐结果进行混合,综合给出相对应的数据。
  2. 电影信息查询服务通过对接MongoDB实现对电影信息的查询操作。
  3. 电影评分部分,获取用户通过UI给出的评分动作,后台服务进行数据库记录后,一方面将数据推动到Redis群中,另一方面,通过预设的日志框架输出到Tomcat中的日志中。
  4. 项目通过ElasticSearch实现对电影的模糊检索。
  5. 电影标签部分,项目提供用户对电影打标签服务。

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。


上一篇:
下一篇:
相关课程

java培训 大数据培训 前端培训 UI/UE设计培训

关于尚硅谷
教育理念
名师团队
学员心声
资源下载
视频下载
资料下载
工具下载
加入我们
招聘岗位
岗位介绍
招贤纳师
联系我们
全国统一咨询电话:010-56253825
地址:北京市昌平区宏福科技园2号楼3层(北京校区)

深圳市宝安区西部硅谷大厦B座C区一层(深圳校区)

上海市松江区谷阳北路166号大江商厦6层(上海校区)

武汉市东湖高新开发区东湖网谷(武汉校区)

西安市雁塔区和发智能大厦B座3层(西安校区)