深入Java集合学习系列(四)
2. LinkedHashMap的实现
对于LinkedHashMap而言,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性。下面我们来分析LinkedHashMap的源代码:
1) Entry元素:
LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。看源代码:
Java代码
- /**
- * 双向链表的表头元素。
- */
- privatetransient Entry<K,V> header;
- /**
- * LinkedHashMap的Entry元素。
- * 继承HashMap的Entry元素,又保存了其上一个元素before和下一个元素after的引用。
- */
- privatestatic class Entry<K,V> extendsEntry<K,V> {
- Entry<K,V> before, after;
- ……
- }
2) 初始化:
通过源代码可以看出,在LinkedHashMap的构造方法中,实际调用了父类HashMap的相关构造方法来构造一个底层存放的table数组。如:
Java代码
- publicLinkedHashMap(int initialCapacity, float loadFactor) {
- super(initialCapacity, loadFactor);
- accessOrder = false;
- }
HashMap中的相关构造方法:
Java代码
- publicHashMap(int initialCapacity, float loadFactor) {
- if (initialCapacity < 0)
- throw new IllegalArgumentException("Illegal initial capacity: " +
- initialCapacity);
- if (initialCapacity > MAXIMUM_CAPACITY)
- initialCapacity = MAXIMUM_CAPACITY;
- if (loadFactor <= 0 || Float.isNaN(loadFactor))
- throw new IllegalArgumentException("Illegal load factor: " +
- loadFactor);
- // Find a power of 2 >= initialCapacity
- int capacity = 1;
- while (capacity < initialCapacity)
- capacity <<= 1;
- this.loadFactor = loadFactor;
- threshold = (int)(capacity * loadFactor);
- table = new Entry[capacity];
- init();
- }
我们已经知道LinkedHashMap的Entry元素继承HashMap的Entry,提供了双向链表的功能。在上述HashMap的构造器
中,最后会调用init()方法,进行相关的初始化,这个方法在HashMap的实现中并无意义,只是提供给子类实现相关的初始化调用。
LinkedHashMap重写了init()方法,在调用父类的构造方法完成构造后,进一步实现了对其元素Entry的初始化操作。
Java代码
- voidinit() {
- header = new Entry<K,V>(-1, null, null, null);
- before = header.after = header;
- }
3) 存储:
LinkedHashMap并未重写父类HashMap的put方法,而是重写了父类HashMap的put方法调用的子方法void addEntry(int hash, K key, V value, int bucketIndex) 和void createEntry(int hash, K key, V value, int bucketIndex),提供了自己特有的双向链接列表的实现。
Java代码
- voidaddEntry(int hash, K key, V value, int bucketIndex) {
- // 调用create方法,将新元素以双向链表的的形式加入到映射中。
- createEntry(hash, key, value, bucketIndex);
- // 删除最近最少使用元素的策略定义
- Entry<K,V> eldest = header.after;
- if (removeEldestEntry(eldest)) {
- removeEntryForKey(eldest.key);
- } else {
- if (size >= threshold)
- resize(2 * table.length);
- }
- }
Java代码
- voidcreateEntry(int hash, K key, V value, int bucketIndex) {
- Entry<K,V> old = table[bucketIndex];
- Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
- table[bucketIndex] = e;
- // 调用元素的addBrefore方法,将元素加入到哈希、双向链接列表。
- addBefore(header);
- size++;
- }
Java代码
- privatevoid addBefore(Entry<K,V> existingEntry) {
- after = existingEntry;
- before = existingEntry.before;
- after = this;
- before = this;
- }
4) 读取:
LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时,记录访问顺序,将最新访问的元素添加到双向链表的表头,并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。
Java代码
- publicV get(Object key) {
- // 调用父类HashMap的getEntry()方法,取得要查找的元素。
- Entry<K,V> e = (Entry<K,V>)getEntry(key);
- if (e == null)
- return null;
- // 记录访问顺序。
- recordAccess(this);
- returnvalue;
- }
Java代码
- voidrecordAccess(HashMap<K,V> m) {
- LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
- // 如果定义了LinkedHashMap的迭代顺序为访问顺序,
- // 则删除以前位置上的元素,并将最新访问的元素添加到链表表头。
- if (lm.accessOrder) {
- modCount++;
- remove();
- addBefore(lm.header);
- }
- }
5) 排序模式:
LinkedHashMap定义了排序模式accessOrder,该属性为boolean型变量,对于访问顺序,为true;对于插入顺序,则为false。
Java代码
- privatefinal boolean accessOrder;
一般情况下,不必指定排序模式,其迭代顺序即为默认为插入顺序。看LinkedHashMap的构造方法,如:
Java代码
- publicLinkedHashMap(int initialCapacity, float loadFactor) {
- super(initialCapacity, loadFactor);
- accessOrder = false;
- }
这些构造方法都会默认指定排序模式为插入顺序。如果你想构造一个LinkedHashMap,并打算按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,那么请使用下面的构造方法构造LinkedHashMap:
Java代码
- publicLinkedHashMap(int initialCapacity,
- float loadFactor,
- boolean accessOrder) {
- super(initialCapacity, loadFactor);
- this.accessOrder = accessOrder;
- }
该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。LinkedHashMap提供了removeEldestEntry(Map.Entry<K,V> eldest)方法,在将新条目插入到映射后,put和 putAll将调用此方法。该方法可以提供在每次添加新条目时移除最旧条目的实现程序,默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。
Java代码
- protectedboolean removeEldestEntry(Map.Entry<K,V> eldest) {
- return false;
- }
此方法通常不以任何方式修改映射,相反允许映射在其返回值的指引下进行自我修改。如果用此映射构建LRU缓存,则非常方便,它允许映射通过删除旧条目来减少内存损耗。
例如:重写此方法,维持此映射只保存100个条目的稳定状态,在每次添加新条目时删除最旧的条目。
Java代码
- privatestatic final int MAX_ENTRIES = 100;
- protectedboolean removeEldestEntry(Map.Entry eldest) {
- return size() > MAX_ENTRIES;
- }