如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据更好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。
尚硅谷打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。
整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。
适合人群:
1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员
2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员
3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员
4.有较好的数学基础,希望学习机器学习和推荐系统相关算法的求职人员