尚硅谷大数据技术之Hadoop(HDFS)第1章 HDFS概述
1.1 HDFS产生背景
随着数据量越来越大,在一个操作系统管辖的范围内存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
1.2 HDFS概念
HDFS,它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1.3 HDFS优缺点
1.3.1 优点
1)高容错性
(1)数据自动保存多个副本。它通过增加副本的形式,提高容错性;
(2)某一个副本丢失以后,它可以自动恢复。
2)适合大数据处理
(1)数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
(2)文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)流式数据访问,它能保证数据的一致性。
4)可构建在廉价机器上,通过多副本机制,提高可靠性。
1.3.2 缺点
1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储。
(1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
(2)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
3)并发写入、文件随机修改。
(1)一个文件只能有一个写,不允许多个线程同时写;
(2)仅支持数据append(追加),不支持文件的随机修改。
1.4 HDFS组成架构
HDFS的架构图
这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分。
1)Client:就是客户端。
(1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行存储;
(2)与NameNode交互,获取文件的位置信息;
(3)与DataNode交互,读取或者写入数据;
(4)Client提供一些命令来管理HDFS,比如启动或者关闭HDFS;
(5)Client可以通过一些命令来访问HDFS;
2)NameNode:就是Master,它是一个主管、管理者。
(1)管理HDFS的名称空间;
(2)管理数据块(Block)映射信息;
(3)配置副本策略;
(4)处理客户端读写请求。
3) DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。
(1)存储实际的数据块;
(2)执行数据块的读/写操作。
4) Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。
(1)辅助NameNode,分担其工作量;
(2)定期合并Fsimage和Edits,并推送给NameNode;
(3)在紧急情况下,可辅助恢复NameNode。
1.5 HDFS文件块大小
HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M。
HDFS的块比磁盘的块大,其目的是为了最小化寻址开销。如果块设置得足够大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。因而,传输一个由多个块组成的文件的时间取决于磁盘传输速率。
如果寻址时间约为10ms,而传输速率为100MB/s,为了使寻址时间仅占传输时间的1%,我们要将块大小设置约为100MB。默认的块大小128MB。
块的大小:10ms*100*100M/s = 100M
本教程由尚硅谷教育大数据研究院出品,如需转载请注明来源,欢迎大家关注尚硅谷公众号(atguigu)了解更多。