Spark 数据倾斜聚合原数据_大数据培训

聚合原数据

  1. 避免shuffle过程·

绝大多数情况下,Spark作业的数据来源都是Hive表,这些Hive表基本都是经过ETL之后的昨天的数据。

为了避免数据倾斜,我们可以考虑避免shuffle过程,如果避免了shuffle过程,那么从根本上就消除了发生数据倾斜问题的可能。

如果Spark作业的数据来源于Hive表,那么可以先在Hive表中对数据进行聚合,例如按照key进行分组,将同一key对应的所有value用一种特殊的格式拼接到一个字符串里去,这样,一个key就只有一条数据了;之后,对一个key的所有value进行处理时,只需要进行map操作即可,无需再进行任何的shuffle操作。通过上述方式就避免了执行shuffle操作,也就不可能会发生任何的数据倾斜问题。

对于Hive表中数据的操作,不一定是拼接成一个字符串,也可以是直接对key的每一条数据进行累计计算。

大数据培训

要区分开,处理的数据量大和数据倾斜的区别

  1. 缩小key粒度(增大数据倾斜可能性,降低每个task的数据量)

key的数量增加,可能使数据倾斜更严重。

  1. 增大key粒度(减小数据倾斜可能性,增大每个task的数据量)

如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度。

例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),现在我们考虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。