尚硅谷大数据技术之Hadoop(MapReduce)(新)第3章 MapReduce框架原理

3.3.10 GroupingComparator分组案例实操

1.需求

有如下订单数据

表4-2 订单数据

订单id

商品id

成交金额

0000001

Pdt_01

222.8

Pdt_02

33.8

0000002

Pdt_03

522.8

Pdt_04

122.4

Pdt_05

722.4

0000003

Pdt_06

232.8

Pdt_02

33.8

现在需要求出每一个订单中最贵的商品。

(1)输入数据

0000001 Pdt_01 222.8
0000002 Pdt_05 722.4
0000001 Pdt_02 33.8
0000003 Pdt_06 232.8
0000003 Pdt_02 33.8
0000002 Pdt_03 522.8
0000002 Pdt_04 122.4

(2)期望输出数据

1 222.8

2 722.4

3 232.8

2.需求分析

(1)利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce。

(2)在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品,如图4-18所示。

图4-18 过程分析

3.代码实现

(1)定义订单信息OrderBean类

package com.atguigu.mapreduce.order;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

 

public class OrderBean implements WritableComparable<OrderBean> {

 

private int order_id; // 订单id号

private double price; // 价格

 

public OrderBean() {

super();

}

 

public OrderBean(int order_id, double price) {

super();

this.order_id = order_id;

this.price = price;

}

 

@Override

public void write(DataOutput out) throws IOException {

out.writeInt(order_id);

out.writeDouble(price);

}

 

@Override

public void readFields(DataInput in) throws IOException {

order_id = in.readInt();

price = in.readDouble();

}

 

@Override

public String toString() {

return order_id + "\t" + price;

}

 

public int getOrder_id() {

return order_id;

}

 

public void setOrder_id(int order_id) {

this.order_id = order_id;

}

 

public double getPrice() {

return price;

}

 

public void setPrice(double price) {

this.price = price;

}

 

// 二次排序

@Override

public int compareTo(OrderBean o) {

 

int result;

 

if (order_id > o.getOrder_id()) {

result = 1;

} else if (order_id < o.getOrder_id()) {

result = -1;

} else {

// 价格倒序排序

result = price > o.getPrice() ? -1 : 1;

}

 

return result;

}

}

(2)编写OrderSortMapper类

package com.atguigu.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {

 

OrderBean k = new OrderBean();

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1 获取一行

String line = value.toString();

// 2 截取

String[] fields = line.split("\t");

// 3 封装对象

k.setOrder_id(Integer.parseInt(fields[0]));

k.setPrice(Double.parseDouble(fields[2]));

// 4 写出

context.write(k, NullWritable.get());

}

}

(3)编写OrderSortGroupingComparator类

package com.atguigu.mapreduce.order;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;

 

public class OrderGroupingComparator extends WritableComparator {

 

protected OrderGroupingComparator() {

super(OrderBean.class, true);

}

 

@Override

public int compare(WritableComparable a, WritableComparable b) {

 

OrderBean aBean = (OrderBean) a;

OrderBean bBean = (OrderBean) b;

 

int result;

if (aBean.getOrder_id() > bBean.getOrder_id()) {

result = 1;

} else if (aBean.getOrder_id() < bBean.getOrder_id()) {

result = -1;

} else {

result = 0;

}

 

return result;

}

}

(4)编写OrderSortReducer类

package com.atguigu.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Reducer;

 

public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {

 

@Override

protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {

context.write(key, NullWritable.get());

}

}