尚硅谷大数据技术之Hadoop(MapReduce)(新)第3章 MapReduce框架原理

2.需求分析

通过将关联条件作为Map输出的key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在Reduce中进行数据的串联,如图4-20所示。

图4-20 Reduce端表合并

3.代码实现

1)创建商品和订合并后的Bean类

package com.atguigu.mapreduce.table;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.Writable;

 

public class TableBean implements Writable {

 

private String order_id; // 订单id

private String p_id;      // 产品id

private int amount;       // 产品数量

private String pname;     // 产品名称

private String flag;      // 表的标记

 

public TableBean() {

super();

}

 

public TableBean(String order_id, String p_id, int amount, String pname, String flag) {

 

super();

 

this.order_id = order_id;

this.p_id = p_id;

this.amount = amount;

this.pname = pname;

this.flag = flag;

}

 

public String getFlag() {

return flag;

}

 

public void setFlag(String flag) {

this.flag = flag;

}

 

public String getOrder_id() {

return order_id;

}

 

public void setOrder_id(String order_id) {

this.order_id = order_id;

}

 

public String getP_id() {

return p_id;

}

 

public void setP_id(String p_id) {

this.p_id = p_id;

}

 

public int getAmount() {

return amount;

}

 

public void setAmount(int amount) {

this.amount = amount;

}

 

public String getPname() {

return pname;

}

 

public void setPname(String pname) {

this.pname = pname;

}

 

@Override

public void write(DataOutput out) throws IOException {

out.writeUTF(order_id);

out.writeUTF(p_id);

out.writeInt(amount);

out.writeUTF(pname);

out.writeUTF(flag);

}

 

@Override

public void readFields(DataInput in) throws IOException {

this.order_id = in.readUTF();

this.p_id = in.readUTF();

this.amount = in.readInt();

this.pname = in.readUTF();

this.flag = in.readUTF();

}

 

@Override

public String toString() {

return order_id + "\t" + pname + "\t" + amount + "\t" ;

}

}

2)编写TableMapper类

package com.atguigu.mapreduce.table;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

 

public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean>{

 

String name;

TableBean bean = new TableBean();

Text k = new Text();

@Override

protected void setup(Context context) throws IOException, InterruptedException {

 

// 1 获取输入文件切片

FileSplit split = (FileSplit) context.getInputSplit();

 

// 2 获取输入文件名称

name = split.getPath().getName();

}

 

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1 获取输入数据

String line = value.toString();

// 2 不同文件分别处理

if (name.startsWith("order")) {// 订单表处理

 

// 2.1 切割

String[] fields = line.split("\t");

// 2.2 封装bean对象

bean.setOrder_id(fields[0]);

bean.setP_id(fields[1]);

bean.setAmount(Integer.parseInt(fields[2]));

bean.setPname("");

bean.setFlag("order");

k.set(fields[1]);

}else {// 产品表处理

 

// 2.3 切割

String[] fields = line.split("\t");

// 2.4 封装bean对象

bean.setP_id(fields[0]);

bean.setPname(fields[1]);

bean.setFlag("pd");

bean.setAmount(0);

bean.setOrder_id("");

k.set(fields[0]);

}

 

// 3 写出

context.write(k, bean);

}

}

3)编写TableReducer类

package com.atguigu.mapreduce.table;

import java.io.IOException;

import java.util.ArrayList;

import org.apache.commons.beanutils.BeanUtils;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

 

public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {

 

@Override

protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {

 

// 1准备存储订单的集合

ArrayList<TableBean> orderBeans = new ArrayList<>();

// 2 准备bean对象

TableBean pdBean = new TableBean();

 

for (TableBean bean : values) {

 

if ("order".equals(bean.getFlag())) {// 订单表

 

// 拷贝传递过来的每条订单数据到集合中

TableBean orderBean = new TableBean();

 

try {

BeanUtils.copyProperties(orderBean, bean);

} catch (Exception e) {

e.printStackTrace();

}

 

orderBeans.add(orderBean);

} else {// 产品表

 

try {

// 拷贝传递过来的产品表到内存中

BeanUtils.copyProperties(pdBean, bean);

} catch (Exception e) {

e.printStackTrace();

}

}

}

 

// 3 表的拼接

for(TableBean bean:orderBeans){

 

bean.setPname (pdBean.getPname());

// 4 数据写出去

context.write(bean, NullWritable.get());

}

}

}