分布式与集群的区别

三、集群分类

Linux集群主要分成三大类( 高可用集群, 负载均衡集群,科学计算集群)

高可用集群( High Availability Cluster)

负载均衡集群(Load Balance Cluster)

科学计算集群(High Performance Computing Cluster)

 

具体包括:

Linux High Availability 高可用集群                                       

(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)

Linux Load Balance 负载均衡集群                                      

 (LVS等....)

Linux High Performance Computing 高性能科学计算集群     

 (Beowulf 类集群....)

分布式存储                                                                         

其他类linux集群              

(如Openmosix, rendering farm 等..)

 

 

 

 

 

四、详细介绍

  1. 高可用集群(High Availability Cluster)

常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备", "双机互备", "双机".

高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。

 

  1. 负载均衡集群(Load Balance Cluster)

负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。

负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。

 

  1. 科学计算集群(High Performance Computing Cluster)

高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。

高性能计算分类

高吞吐计算(High-throughput Computing)

有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上 参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。

 分布计算(Distributed Computing)

另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。

 

  1. 分布式(集群)与集群的联系与区别

分布式是指将不同的业务分布在不同的地方。

而集群指的是将几台服务器集中在一起,实现同一业务。

分布式中的每一个节点,都可以做集群。

而集群并不一定就是分布式的。

举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。

而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。

分布式的每一个节点,都完成不同的业务,一个节点垮了,哪这个业务就不可访问了。